
Agent-based crowd simulation for building plan
Kaleab Belete

University of California, Berkeley
Berkeley, U.S.

xinwei_zhuang@berkeley.edu

Xinwei Zhuang
University of California, Berkeley

Berkeley, U.S.
xinwei_zhuang@berkeley.edu

Tristan Streichenberger
University of California, Berkeley

Berkeley, U.S.
tristanstreich@berkeley.edu

Gregoria Millensifer
University of California, Berkeley

Berkeley, U.S.
gregoriiaaa@berkeley.edu

Figure 1: Crowd dynamics in Daxing Airport.

ABSTRACT
Circulation simulation is critical for both architecture design and
urban planning, which has a great impact on the efficiency of the
common daily life as well as emergencies such as fire incidents and
terrorism. We propose an agent-based circulation simulation with
personalized characters to visualize, evaluate, analyse and optimize
the building plan. We use ray tracing to detect the furthest direction
one agent can reach, and use Russian Roulette for probability of
turning into a specific direction. We introduce swarm algorithm
to the crowd, but for each agent we introduce randomness by pa-
rameterizing different behaviours. Then for each building plan, we
provide goals, for the crowd to reach a specified destination, and use
the converge time as evaluation of the effectiveness of the building
plan. Our hypothesis is that the building plans with curvature walls
will have a better performance regarding the circulation efficiency.

KEYWORDS
Crowd simulation, Crowd dynamics, Agent based modelling, Colli-
sion Avoidance, Rock dynamics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Kaleab Belete, Xinwei Zhuang, Tristan Streichenberger, and Gregoria Millen-
sifer. 2022. Agent-based crowd simulation for building plan. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 5 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
It is crucial when architects make the design decisions for choosing
the best circulation plan, especially for large activities. Failure in
circulation design can cause problems ranging from making it con-
fusing to find ways and locating to Stampede, and can be critical
when unexpected incidents happens [7]. This study aims to pro-
vide a evaluation tool for circulation in complex building settings
by stimulating behaviors of crowds. We use Daxing airport as a
case study, for it serving as a model for the efficient circulation for
airport. We perform our simulation within the airport, by initializ-
ing groups of people at the entrance, and set different destination
within the population.

The group will search for the direction with maximum visual
depth, proceeding to the goal positionwith behavioral rules within a
group.We use particle simulationwith swarm algorithm to generate
the crow behaviour, we then incorporate randomness by setting
different behavior within the group, including the preference of
turning at a crossroad, the distance to the majority of people, etc.,
to perform circulation simulation within a building, and use the
simulation to evaluate the design of the building plan. We aim to
simulate how people behave in crowds with different environments,

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Kaleab Belete, Xinwei Zhuang, Tristan Streichenberger, and Gregoria Millensifer

and more to accurately model and simulate crowd behavior and
inform design and planning decision.

2 RELATEDWORK
Many studies investigated how to accurately model the crowd
behaviour with real time simulations [5][6][8][10]. Popular ap-
proaches includes flow-based approach [3], entity-based approach,
and agent-based approach [11].

Recently, Li et al. [4] (2022) investigated the influence of geomet-
ric layout of exit on escape mechanism of crowd.

3 METHODOLOGY
We integrated several algorithms to perform the crowd simulation.
In the agent level, we used ray-tracing based collision avoidance to
find the direction with maximum depth. We use Russian Roulette
to pick the actual turning direction based on the depth information.
In the crowd simulation, We perform used flocking algorithm to
perform crowd dynamics, which is a combination among cohesion,
separation and alignment. We also introduce randomness in the
group with different behaviour, such as aggressive, shyness, to
perform a comprehensive group behaviour. Finally, we used path
finding to find the nearly-optimal path for the agents to follow.

3.1 Collision Avoidance

Figure 2: Rays detecting objects in a person’s path

𝑠
∑︁
𝑟

(
\𝑟 −

𝜋

2

) (
1 − 𝑑𝑟

𝐷

)𝑝
We added collision avoidance as an individual behavior for each of
the people by implementing ray casting. On each update, a person
sends out rays out in a fan centered on their current velocity. For
each ray, a nudge angle is calculated based on the the above equation
(to the right of the summation). \𝑟 is the ray’s angle away from
the current velocity. 𝑑𝑟 is the distance to the collision. 𝐷 is the
max distance the ray checks. 𝑝 is some exponential term. This all
equates to an angle that is 90◦ away from the collision and is scaled
down based on how far away the collision is. Close collisions will
have a higher nudge angle and farther collisions will have smaller
nudge angles. The exponential term amplifies this effect. The nudge
angle is then summed for all the rays to get what angle the person
should turn to to avoid the incoming obstacles. Finally, the sum is
scaled down by 𝑠 which is the turning speed. This makes the person

not immediately jump to the angle they need to get to. Instead it
takes several updates to get there, which makes their turning look
smoother.

3.2 Crowd dynamics
We integrate individual agents using a rule-based flocking algo-
rithm, separation, alignment and cohesion to simulate the crowd
behaviour.

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 =
1
𝑘

∑︁
𝑘

𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦.𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
∑︁
𝑖≠𝑗

𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦 [𝑖] .𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =
1
𝑘

∑︁
𝑘

𝑟𝑖𝑔𝑖𝑑𝑏𝑜𝑑𝑦.𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑡𝑒𝑒𝑟 = 𝑡𝑎𝑟𝑔𝑒𝑡 .𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Separation is to maintain a certain distance for a object with its
surrounding neighbours. If the distance between the neighbours is
too close, the object will go to the opposite direction. We check the
nearest k neighbours and find the combined direction. For cohesion
the object will move towards the centroid of the group, again we
are constraining the group to k nearest neighbours to accelerate
the algorithm speed. For alignment the object is trying to adjust its
speed with the average speed, and for steer the object will follow
the nearest path towards its destination.

Figure 3: Flocking algorithm implementation with cohesion,
separation and steer

3.3 Agent behaviour
The crowd are spawned at a specific segment (a stand in for doors
at peak traffic) and begin moving in 2D space according to a preset
rules: Movement is based on current position with a random move-
ment factor included; Individual agent aims to maintain course for a
noticeable subset of time steps to complete a goal; Individual agent
has a innate repulsion factor to avoid collision but it is affected
by randomness(the crowd tend to stay apart but not at the same
distances), but also finds a fast path to their destination. For each
agent, we modify the parameters according to their personality
group by the following matrix[9].

Agent-based crowd simulation for building plan Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝑉𝑆ℎ𝑦

𝑉𝑁𝑜𝑟𝑚𝑎𝑙

𝑉𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

 =

0.03 0.06 0.02
0.22 0.04 0.32
0.11 0.04 0.13
0.28 0.16 0.41
1.05 1.07 1.02

𝑇

1
13.5 (Neighbour Dist - 15)1
49.5 (Max. neighbours - 10)

1
14.5 (Horizon - 10)

1
0.85 (Radius - 8)1

0.5 (Preferred speed - 1.4)

Figure 4: Different agent behaviours. Reds for aggressive
personalities, greys for the average population, and blues are
for the shy people.

3.4 Path planning
Planning requires us to take into account our goal as well as ob-
stacles in our way and different planning decisions have different
trade-offs between them. The core planning logic ties together ev-
erything else and produces the final action model. First we split the
grid into discrete spaces and determinate which spots are walk-able
and which are not. More granular splits will allow agents to move
between tight spaces but this is memory intensive and may not
always be needed. There are also more sophisticated algorithms we
can use to create our grid mesh like a quad tree approach which on
average can reduce the number of spaces we manage from n x n
to n*log(n). This approach attempts to group large empty spaces
into one large square rather than splitting the map evenly. For our
situation the overhead of managing this adds up, as we have a con-
siderable number of dynamic agents that are constantly moving,
making it more reasonable to just have a constant grid we update in
a single pass based on the agents positions. After we create our grid

Figure 5: Grid mesh with walkable areas in gray

we find a path on the grid based on a path planning approach. For
this assignment we explored a few approaches, the ones that stood
out were Artificial Vector Fields/Potential Fields, A* path finding,
and RRT/RRT* path finding. For Artificial Vector Fields/Potential
Fields we split the map and all the objects in the map have a set pull
or push force based on if they are an obstacle or goal (proportional
to their size and distance) and we set the final force as the sum of
all forces. This approach is good when working with a lot of agents,
as you don’t have to constantly check a large number of tiles for
each agent, but it struggles with local minima so complex geome-
try has unpredictable results. A* path finding is a straight forward

Figure 6: Formulas

outward search where we use the Manhattan distance as the cost
function. Moves are calculated based on the number of steps you
have to take from the start point and the distance to the end goal.
This algorithm is guaranteed to find a path if one exists. RRT/RRT*
path finding is similar to A* but now we search randomly (with a
maximum step distance out-words) and re-evaluate after each step.
RRT* is a version of RRT that aims to provide more optimal paths by
smoothing out the path through extended exploration and dynamic
path linking. RRT* is more costly and for our use case unnecessary
as path optimally is not important (people don’t calculate optimal
paths when walking). RRT performance was not too far from A*
but it was less consistent (likely due to the random nature of the
exploration). RRT benefits from high dimensionality but because
we were moving across a 2d grid we did not get to leverage the
boost in performance. Both RRT and RRT* are probabilistically
guaranteed to find and a path if one exist. Ultimately a guided A*
give the best performance for our use case. We put buffers around
objects and dynamically updated the grid and queried new paths
on the fly with collision checking. The paths are a bit rough but
smoothness is not as important here as some other use cases, the
performance improvement from foregoing smoothing was much
more impactful. Lastly, after we set up our grid and structured our
algorithm we had to decide how to update. The paths are updated
on a timer but we also check for collisions, the agents are spawned
with random properties like speed and vision length meaning we
have to dynamically adjust the paths as they approach obstacles
we did not plan for. For example if a person is at the goal already
we stop early as to not crowd a given area.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Kaleab Belete, Xinwei Zhuang, Tristan Streichenberger, and Gregoria Millensifer

Figure 7: Dynamic Goal Stopping

3.5 Character Modeling and Animation
In order to add realism to our simulation, we also wanted to use
character modeling for the people in the crowd. To do so, we used
Blender, a free and open-source 3D computer graphics software tool-
set, to create 3D human models and animate their walk. As our goal
is to simulate crowd behavior, we kept in mind the limitations of
rendering multiple copies of a model simultaneously in our scene.
So, we started off with a simple humanoid, then downloaded a
complex character from Blender Studio, and finally found a simple
humanoid that was not too complex but also still looked better than
the basic humanoid we first created.

Using a very basic humanoid allows us to run the simulation
faster and smoother because its lack of complexity means there are
less polygons to render in the scene. The downfall is, of course, that
it is very noticeably odd to the human eye.

Figure 8: Very basic humanoid

In an attempt to make the simulation look more artistic, we
downloaded Rain [2], a generic character rig offered for free from
Blender Studio, and animated her walk in Blender. When we im-
ported this character into our project, everything ran a lot slower
and even making simple changes to the character’s object proper-
ties would take a few minutes to update for all the instances. Thus,
we decided to not use Rain for our project because, although it looks
nice, the detail was unnecessary because we are more concerned
in the crowd as a whole rather than a single person.

Finally, we found a compromise between artistic and efficient by
downloading a simple humanoid on an open source website [1] and

Figure 9: Complex character, Rain [2]

animating that. Because our end goal is to simulate crowd behavior,
which requires a lot of character copies to be simultaneously present
on the scene, it is more effective to use the simple humanoid rather
than the complex character because the detail from the complex
character was unnecessarily slowing down everything.

Figure 10: Simple humanoid

To animate the characters on Blender, we first moved the charac-
ter’s bones into key frames that model a regular human walk. We
used six key frames and edited the poses to our satisfaction using
block chain animation. Then, we applied Blender’s Bezier Curves
animation option, which smoothed the transitions between key
frames.

4 RESULT
The current simulation is still in its infancy and is only comprised of
the the core components. The simulation can leverage basic logic to
do high level representation of crowed activity. For a more complex
simulator with less time investment it would be best to build on ex-
isting technology like unity provided meshes, preexisting projects,
or external libraries. Building the tools from scratch gave us more
granular control, helped us understand the core components that
go into a project like this, and allowed us to build a basic working
tool.

Agent-based crowd simulation for building plan Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 11: Sample simulation in progress

Figure 12: Sample simulation in progress

5 SUMMARY
Circulation has a huge impact on the efficiency of the daily life
and more so for emergencies incidents. We propose an agent-based
circulation simulation with personalized characters to visualize,
evaluate building plans and reversely inform the design decision.
We used high level planning and a flocking algorithm to simulate

crowd behaviour, adding personalities to individual agents, as well
as ray tracing to perform collision detection. Results show the algo-
rithm can simulate complex behaviour within a complex building
plan.

However, there are several limitations that we can improve in
the future. We only implemented a single floor simulation in 3D.
There are still rough-edges in the simulator and some nice to have
features missing like industry standard evaluation metrics or a map
editor. Adding the key features and smoothing out the rough edges
would allow us to integrate the core simulation tech together into a
full efficient pipeline that adequately models crowed activity. Future
work includes but is not limited to improving models, animation
smoothing, adding more complex logic, and integrating with 3d
multi-level movement. In the future we would like to include video
footage and compare the simulation result with the real world
scenario to evaluate and improve the accuracy of the simulation.

ACKNOWLEDGMENTS
We would like to thank Prof. Ren Ng for his wonderful lectures in
Computer Graphics and Imaging. We’d also like to acknowledge
all the GSIs for their advice for developing this project.

REFERENCES
[1] [n.d.]. Base Character. ([n. d.]). https://free3d.com/3d-model/base-character-

ready-to-animate-453899.html
[2] Demeter Dzadik. [n.d.]. Rain Rig © Blender Foundation. ([n. d.]). cloud.blender.

org
[3] Kevin Jordao, Panayiotis Charalambous, Marc Christie, Julien Pettré, and Marie-

Paule Cani. 2015. Crowd art: density and flow based crowd motion design. In
Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games. 167–176.

[4] Wang J. Xu S. et al. Li, J. 2022. The effect of geometric layout of exit on escape
mechanism of crowd. Building and simulation 15 (2022), 659–668. https://doi.
org/10.1007/s12273-021-0799-2

[5] Nuria Pelechano, Jan M Allbeck, and Norman I Badler. 2007. Controlling individ-
ual agents in high-density crowd simulation. (2007).

[6] Daniel Thalmann. 2016. Crowd Simulation. Springer International Publishing,
Cham, 1–8. https://doi.org/10.1007/978-3-319-08234-9_69-1

[7] Mingliang Xu, Xiaozheng Xie, Pei Lv, Jiangwei Niu, Hua Wang, Chaochao Li,
Ruijie Zhu, Zhigang Deng, and Bing Zhou. 2018. Crowd Behavior Simula-
tion with Emotional Contagion in Unexpected Multi-hazard Situations. CoRR
abs/1801.10000 (2018). arXiv:1801.10000 http://arxiv.org/abs/1801.10000

[8] Ming-Liang Xu, Hao Jiang, and Xiaogang Jin. 2014. Crowd Simulation and Its
Applications: Recent Advances. Journal of Computer Science and Technology 29
(09 2014), 799–811. https://doi.org/10.1007/s11390-014-1469-y

[9] Shanwen Yang, Tianrui Li, Xun Gong, Bo Peng, and Jie Hu. 2020. A review on
crowd simulation and modeling. Graphical Models 111 (2020), 101081. https:
//doi.org/10.1016/j.gmod.2020.101081

[10] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D.Manocha, andM. Lin. 2008. Composite
Agents. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Dublin, Ireland) (SCA ’08). Eurographics Association, Goslar,
DEU, 39–47.

[11] Suiping Zhou, Dan Chen,Wentong Cai, Linbo Luo, Malcolm Yoke Hean Low, Feng
Tian, Victor Su-Han Tay, Darren Wee Sze Ong, and Benjamin D Hamilton. 2010.
Crowd modeling and simulation technologies. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 20, 4 (2010), 1–35.

https://free3d.com/3d-model/base-character-ready-to-animate-453899.html
https://free3d.com/3d-model/base-character-ready-to-animate-453899.html
cloud.blender.org
cloud.blender.org
https://doi.org/10.1007/s12273-021-0799-2
https://doi.org/10.1007/s12273-021-0799-2
https://doi.org/10.1007/978-3-319-08234-9_69-1
https://arxiv.org/abs/1801.10000
http://arxiv.org/abs/1801.10000
https://doi.org/10.1007/s11390-014-1469-y
https://doi.org/10.1016/j.gmod.2020.101081
https://doi.org/10.1016/j.gmod.2020.101081

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Collision Avoidance
	3.2 Crowd dynamics
	3.3 Agent behaviour
	3.4 Path planning
	3.5 Character Modeling and Animation

	4 Result
	5 Summary
	Acknowledgments
	References

